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BRST cohomology for U,(s1(2)) representations 
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Abstract. A nilpotent BFSToperatOr Qq is constructed forthe q-deformation of the universal 
envelopingalgebraafsl(2). Anassociated operator R, suchthat(Q,,, R v )  = C, isintroduced. 
where C,, is the q-deformed Casimir invariant C, =/e+ [!h],[fh + I]+.. The related operator 
Q: conjugate to Q, is also considered. The resulting BRST cohomology of U,(s1(2)) 
representations is discussed. 

The study of 'quantum deformations' of algebraic structures in the theoretical descrip- 
tion of two-dimensional systems has received recent impetus from its deep applications 
in statistical mechanics, conformal field theory and anyonic systems [l]. The q- 
deformations can altematively be considered in the case of Lie algebras as generalized 
dynamical symmetries in quantum mechanical problems [2], in the case of the q- 
oscillators in terms of generalized Bose or Fermi gases in a thermodynamic context 
[3], or more fundamentally in terms of non-commutative geometry and quantum planes 
[4]. The representation theory of the q-deformations is of interest in its own right and 
adds to the understanding of that of the undeformed algebras. 

A natural related question is whether the q-deformations can be used as local gauge 
symmetries [SI in the spirit of, say, Yang-Mills and Shaw, with the overall aim of 
physical applications in quantum field theories. In this connection a point of departure 
is the generic study of gauge theories and their quantization as systems of constraints. 

law on physical states [6] ;  in more general situations the procedure of Dirac [7] is 
supplanted in modern treatments by the powerful Balatin-Fradkin-Vilkovisky (BFV) 

formulation of BRST symmetry [8]. 
In the present letter the problem of gauging the quantum groups is approached 

from this perspective. I n  particular we consider the algebraic problem of constructing 
a ERST symmetry for the simplest quantum universal enveloping algebra, U,(s1(2)). 
This serves as a zero-dimensional analogue of the associated question of quantization 
of a local gauged version, and is in itself interesting for the elucidation of the structure 
of the algebra and its representations. As will be seen, the resulting BRST cohomology 
is richer than the undeformed case even for U,(s1(2)), and for arbitrary semisimple 
Lie algebras [9] the deformed U,(%) cohomology is expected to be similarly richer 
[lo]. The BRST framework is related to studies [ l l ]  on the mathematical problem of 
the Hochschild and cyclic cohomology of quantum groups, but is more natural from 
the point of view of quantization. 
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The foregoing physical considerations allow questions of the definition and unique- 
ness of the required BRST operator Q, to be answered for the q-deformed case. 
Specifically we require a nilpotent operator Q: = 0 for q # 1 rather than one whose 
square vanishes in the q + 1 limit, since we are interested in the availability of the 
BFV-ERST quantization for constraints arising as a q-deformed algebra. Secondly, we 
demand that Qq be a 'minimal' extension of the standard undeformed BRST operator 
Q for sI(2) (see below), whose q + 1 limit is just Q itself. 

For purposes of comparison we quote the form of the well known (nilpotent) ERST 

operator Q in the case of a compact semisimple or reductive Lie algebra. In a Hermitian 
basis with generators T. and commutation relations 

[To, TbI=ic:bTc (1) 

to which are appended the ghost and antighost generators cy ,  Cb respectively, which 
satisfy the Clifford algebra 

I C " ,  Eb) = 8; (2) 

Q =  c"T.+$ic'cbC;,Z,,. (3) 

the corresponding ERST operator is defined by 

Foi s:(2) ii wi!! be i i i~ie  canvenien: :O =se ;he s:anda:d (Cartan-Wey!) generakm 
e, f and h. In the deformed case they satisfy 

where 

To e,f and h are associated respectively the ghost generators c+, c -  and CO respectively, 
rhich satisfy the antir.ommu!i?tinn re!atloas (2) with their antighost counterparts. With 
these preliminaries the required deformed operator Q, for U,(s1(2)) is given by 

Q, = ec-+fc'+[ h]co+ 8'c+c-+ (qh+' +q-h-')E-c-co- (qh-'  + q-h+')E+c+co 

+ ( q  - q - ' ) 2 [ h ] T t E - ~ + ~ - ~ o .  ( 5 )  

9:=0 
Using (2) and (4) the nilpotency of Q, can be verified directly, 

which constitutes our central result. The form of Q, is fixed from the nilpotency 
requirement once it is assumed to be linear in e and f i n  U,(s1(2)) (and, of course, to 
have unit ghost number). It then is the unique minimal extension of the undeformed 
Q, which reads explicitly 

( 6 )  

which is polynomial in q h  = k and has the correct q + 1 limit Q, + Q. Note also that 
the ghost generators have been defined with standard fermionic anticommutation 
relations rather than in terms of q-deformed operators, in conformity with the strategy 

Q = ec- i f c ' i  hco+ 8 ' c ~ c ~ + Z ~ ~ c ~ c ~ - 2 E ~ c ~ c ~  
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that in the field theory case the BFWBRST quantization should reproduce the correct 
ghost fields to represent the required Faddeev-Popov determinants arising from gauge- 
fixing. (This requirement also ensures the simplifying feature that any operator of fixed 
ghost number can be expanded in a finite number of terms monomial in the ghost and 
antighost generators, with coefficients in the q-deformed universal enveloping algebra.) 

The operator Q, thus defined must be accompanied by some additional structure 
if its utility in discussions of cohomology is to be comparable with the corresponding 
undeformed operator (3 )  or, say, the exterior derivative in the differential geometry 
case. The analogue of the Laplacian of the latter case is, for the algebraic case, the 
Casimir invariant or a generalization thereof [9].  Here again the q-deformed situation 
is fraught with some ambiguity in that, even for the lowest order, different constructions 
lead to formally distinct expressions which differ in the q + 1 limit from the standard 
Casimirs by  (sometimes divergent) overall constants [12]. In the case of U,(sl(Z)) two 
commonly discussed alternatives [13] are 

h + l  c, =fe + [ -4 
and 

(7) 

respectively. In the following, we mainly consider the second choice, as its q + 1 limit 
is the standard sl(2) Casimir with eigenvalue j ( j +  I) ,  and it is this operator which is 
involved in the corresponding construction in the undeformed case [9],  whereas the 
first contains the additive constant a in the limit. The analogy with the differential case 
is completed by introducing an operator R, whose anticommutator with Q, is the 
desired Casimir operator, {Q,, R,}= C,. Again, since R, has ghost number -1, it has 
a finite expansion, and the form of Q, dictates the unique solution 

where the Casimir (8) has been used. 
By standard arguments [9] it follows from the above structure that the only 

non-trivial cocycles in the cohomology of Q, are the representations of U,(s1(2)) with 
vanishing Casimir invariant. At generic values of q, and ghost number zero, these are 
just the singlet representations (with spin zero), as in the undeformed case. At non-zero 
ghost number the analysis also follows the undeformed case [9], so that there are for 
ex~iiipli: ihi: coii~ieap~fidiiig jifigkis a: i i i a x i ~ i i ~  ghost ~GKE~E; (=3  f ~ :  s!(Z)). Moie 
general possibilities are apparent when the structure of the constraint condition 
Q,lphys) = O  is examined at fixed ghost number (say, 0). In particular the requirement 
[ h],colphys) = 0 suggests that, for non-generic values of q. and for h having a suitable 
spectrum, non-singlet solutions may occur. 
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For 9 a root of unity the representations of U,(s1(2)) can be described as follows 
[14]. Let M be the smallest positive integer such that 9M = 1, and N =  M (M odd) 
or M / 2  (M even). Define X=(SU+l(modN)), Z = ( q ' S , ) ,  i , j E Z N ,  so that ZX=9XZ.  
Now up to a trivial rescaling e-tx-le, f + x f  the matrices 

e=[aZ]X f = [bZ- ' ]X- '  k = 9 = abZ' 
provide an N-dimensional representation of U,(sl(Z)), where a, b are numbers, and 

tion is irreducible and periodic (det( e) # 0, det( f )  # 0), and irreducible and semiperi- 
odic when only one of them is (so that only one of the determinants vanishes). When 
both a and b are an integer power of 9, there is the possibility that the representation 
is indecomposable. 

For the Casimir given by (8) the eigenvalue in such an N-dimensional representation 
is 

~ u ~ ~ ~ u - u - ' ~ ~ ~ ~ - ~ - l ~ , ~ ~ ~ z i i i i ~ h z i ~  iioibisaiiiiiizgziiiowziof~,~heiziiiejzii:a- 

C, = ( a b q + ( a b q ) - ' - q - q - 1 ) / ( q - q - ' ) 2  
= q(ab)-'(ab - ] ) ( a b  - ~ - ~ ) / ( 9  - s - ' ) ~ .  (10) 

Therefore it constitutes a cohomology class if ab  = 1 or 9-2. This certainly includes 
the periodic case, but excludes the semiperiodic case in which only one of a and b 
must be a power of q. Examples of the final category (both a and b powers of 9 such 
that ab = 1 or 9-'), are the so-called indecomposable spin representations with spin 
j = !N - 1 (for odd N 2 3) [ 141. It is clear that the structure is ncher than that of the 
undeformed case even for this simplest example of U,(s1(2)) and at Aero ghost number; 
this feature would be expected more generally and especially in the case of U,(9) [lo]. 

As pointed out by van Holten in the case of compact Lie algebras [9], it is quite 
natural to introduce a BRST complex with :he structure of supersymmetric quantum 
mechanics in which the BRST operator Q is augmented by its adjoint Q'; their 
anticommutator plays the role of :he Hamiltonian H and is a certain 'ERST completion' 
of the Casimir invariant. In this case there is, for unitary representations, by the 
positivity of H, a Hodge decomposition, and a complete decomposition of states into 
supennultiplets a: each ghost number is possible. In a Hermitian basis for the Lie 
algebra, the adjoint of Q (which is also nilpotent) is given by 

Q'= COTn +:iEbE,Cibc" (11) 

where TY and T. are dual wRr to  the Killing form. We have so far been unable to 
obtain a q-analogue of this object. Nevertheless, one can define a t operation for 
UJsI(2)) via the substitutions 

e + f  f + e  h - t  h 
C O * $  C+*E+ c- * r- 

in Q, to obtain a nilpotent Q: 
Q: = / E - +  e ~ + + [ h ] p +  c - ~ + ~ O +  ( q h + l  + 9 - h - I ) p r - C - - ( 9 h - l  + 9-h+'),?'~+C+ 

+ ( 9  -q-1)2[h]?'E-E+c-c+. (12) 
From Q, and Q: we can define the object H = IQ,, Q:} which commutes with both 
Q, and Q: and can be utilized in the same way as van Holten's in the analysis of 
cohomology. Note however that 
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where . . . stands for purely ghost-dependent terms, and thus H cannot be considered 
as the BRST completion of the Casimir. 

In conclusion, it has been shown that within a framework appropriately motivated 
by consideration of quantization of systems with first class constraints generating a 
q-deformed algebra, a nilpotent BRST operator Q, can be defined. Q, and related 
operators have been constructed for U,(s1(2)) and their properties verified using 
symbolic computation; more systematic studies of more general algebras are also 
possible [lo]. Although the analogy with the de Rham cohomology is not straightfor- 
ward (compare [Ill),  enough of the structure has been established to show that the 
BRST cohomology of U,(s1(2)) is richer than the undeformed case; for example there 
are non-trivial irreducible representations at q a root of unity which correspond to 
non-trivial cocycles (cohomology classes). This feature is expected to persist for more 
general algebras [lo]. 

differences between Qi and R,, point perhaps to the need for a more detailed 
understanding and improved definition of the adjoint operation t. This is perhaps not 
surprising if the Casimir invariant and Killing form are looked at from a geometrical 
perspective: presumably in the q-deformed case there is a need to apply considerations 
of ‘q-geometry’ [4]. 

The basic conclusion of the present letter is that the ERST cohomology is interesting 
in the q-deformed case. This has implications for physics based on gauged quantum 
groups. Presumably the physical states need no longer be ‘gauge invariant’ (that is, 
singlet under the constraint algebra at zero ghost number); instead appropriate multi- 
plets of some (global?) algebra might be allowed, suggesting fascinating possibilities 
for example for the family replication problem in the context of unified models. 

After this work was completed, we became aware of the paper of Kunz ef al [15] 
which also studies the problem of constructing quantum BRST operators. However, 
they deal with the ‘twisted SU(2) group’ of Woronowicz [16] while we deal with 
UJsI(2)) as defined by Drinfeld and Jimbo. Furthermore, they employ q-deformed 
ghosts while we prefer to stick to undeformed ones. The relation between our two 
approaches remains to be clarified. 

ne dcpzr!??re af the q-dcf!?rmed h m  the ..ndef!?rmed ccsc, End in p2!?lc.!cr the 
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